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Introduction 
Conventional wisdom holds that innovation and invention are predominantly urban 

phenomena—concentrated most heavily in global city agglomerations—and rare or idiosyncratic 

in rural areas (Carlino and Kerr 2014, World Bank 2009). Patents per capita rates are highest in 

urban areas; however, recently available data that track individual inventors and their locations 

provides evidence that seemingly contradicts this wisdom: patenting rates per inventor in rural 

areas are roughly equal to those of urban areas. These prolific rural inventors raise important 

questions about the geography of invention: Does the productivity of individual inventors inform 

the patent production capacity of a region? If the selection of successful inventors biases the 

measure of regional patenting productivity, then what is the appropriate pool of potential 

inventors and auxiliaries who support the patenting process? Is the convention of using 

population as this pool defensible? 

Making sense of these seemingly incongruous data compelled a critical examination of 

population as the default denominator for computing patenting rates. Despite the import attached 
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to patents per capita as a primary indicator of a region’s innovative capacity (Furman, Porter and 

Stern 2002; Carlino, et al. 2007; Krammer 2009; Galindo-Rueda 2013; OECD 2009; OECD 

2010), we were unable to find any studies that confirm the validity of the construct.i It is 

somewhat ironic that a primary indicator of a region’s ability to codify new ways of thinking 

relies on a convention of convenience. We hope to demonstrate that a meaningful comparison of 

cross-sectional or longitudinal patenting rates requires defining a subpopulation that plausibly 

contributes to patenting. 

We begin by evaluating the default metrics for regional innovation/invention—patents 

per capita and patents per inventor—to motivate our assessment of population as a denominator 

and the need to search for an alternative. The fact that the patents per capita data comport with a 

dominant mental map of what innovation data should look like demands an explanation of why. 

The portfolio of places argument in the World Bank’s Reshaping Economic Geography (2009) 

provides a rational explanation that relegates lower order places to filling more routine 

production, service, and logistical roles. This compels the disturbing follow-on question: Why is 

there any patenting in rural areas? 

This leads us to an inductive identification of the regional inventive economy that 

provides an alternative basis for assessing the relative patenting productivity of a region by 

allowing us to compute patenting rates on the subset of the population who might plausibly 

contribute to patent production. The competing measures are compared axiomatically and 

empirically to assess their relative construct validity. A method for decomposing the population 

denominated patenting rate into a compositional factor pertaining to the inventive class and a rate 

factor provides new insights on patent indicators, stimulating further debate on this important 

topic. 
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Inventor Disambiguated Patent Data 
This analysis uses a novel database covering all utility patents granted by the U.S. Patent 

and Trademark Office from 1975 through 2010. It was constructed from a new data product, 

supported in part by the National Science Foundation, which uses a Bayesian supervised learning 

approach to uniquely identify all inventors that appear on utility patents (Lai, et al. 2013). This 

means that inventors can be located and tracked across space and time. Using the USGS 

Geographic Names Information System, we assign each inventor to a county based upon the city 

and state of the inventor’s address provided at the date of patent application. For patents with 

more than one inventor, we assign each author an equal fraction of that patent. County identifiers 

associated with individual patents allow us to construct a consistent dynamic profile of rural 

patenting, rural inventors, and rural technologies (reference redacted to maintain anonymity). 

County level patent data may suffer from false precision, as place of invention is defined 

by the inventor’s place of residence, which may differ from the county where much of the 

inventive work took place. This is especially likely in large urban agglomerations. To address 

this problem, our analysis uses a commuting zone geography that aggregates counties based on 

the strength of inter-county commuting patterns (Parker 2012). While this strategy cannot 

guarantee the reported patent statistics resolve all place of work versus place of residence 

discrepancies, it should resolve the great majority of them. 

What the Data Show 
Patents per capita purports that a region’s entire population – very young to very old, 

white collar and blue collar, employees in industrial and service sectors – possess equal patenting 

capacity. Using patents per inventor restricts the plausible patenting population to those who 

have achieved patenting success. 

Patenting rates per inventor are displayed as the third dimension in Figure 1. 
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Figure 1. Patents per inventor, 2000-2005, by commuting zone 

 

Commuting zones are identified as either containing a global city, urban without a global 

city, or predominantly rural.ii The image is disconcerting for those well-versed in the geography 

of invention (or as confounded with the geography of innovation), as the anticipated red peaks of 

invention in well-known global cities and the ivory valleys of rare rural and small city invention 

are replaced by an eerily uniform distribution of inventiveness. The two exceptions are the 

counties of Redwood and Renville in Minnesota and the Boise, Idaho, commuting zone. 

Redwood-Renville counties stand out as a singular case where the inventive process is prominent 
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and exalted in a rural community—it is the home of the Minnesota Inventors Hall of Fame and 

actively supports student inventors. Boise provides a more conventional story of the geographic 

concentration of patents—since the 1970s it has developed as a satellite of Silicon Valley (Mayer 

2009). A transplanted Hewlett-Packard facility, homegrown Micron Technology, and a growing 

number of high-tech firms have relied heavily on quality-of-life amenities to attract highly 

skilled labor. Aside from these two cases, this map suggests that the projection of an individual 

measure of productivity to a geographical area may be a poor representation of the area’s 

inventive capacity. 

Indeed, the selection of inventors as the denominator may raise valid questions about 

models of the inventive process, supporting strong priors that patents per inventor should be 

higher in global cities. But the measure does not inform the inventive capability of a place. 

Having selected successful inventors for the metric, it may represent nothing more than a 

quantification of anecdotal evidence of the rare rural inventor. Patenting rates calculated on a per 

capita basis applied to these data restore confidence in our priors on the geography of invention.  
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Figure 2. Patents per capita, 2000-2005, by commuting zone 

 

In Figure 2, the Silicon Valley commuting zone containing San Jose is returned to its 

point of prominence, while patenting in Boston, though reasonably high, is eclipsed by other 

Northeastern urban areas. Although the map does not support a strict dominance of global city 

commuting zones over other urban commuting zones, it does clearly indicate that patenting in 

rural commuting zones is muted. However, the challenge to one denominator should extend to 

the other even if the map of the metric comports with our priors.  
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The validity of population as the denominator for computing patenting rates is best 

challenged by a thought experiment of industrial clustering run amok. Say that alongside 

nanotechnology cities, biotechnology cities, and software cities we had retirement cities and 

tourism cities. Comparing patenting rates across these two groups based on population would be 

wholly uninteresting. Yet, in the real world, some places may have a substantial portion of their 

population supported by economic activities that have exceedingly low patenting rates. So 

should the patenting rate of Paris take a hit just because it also happens to be the leading tourism 

destination in the world? Tourism in Paris arguably supports a more vibrant café economy and 

such places may be an essential component of the invention ecosystem. If tourism employment is 

generally associated with higher patenting rates, we will have learned something and opened up 

new questions about the inventive process. If not, we should stop penalizing the patenting rates 

of beautiful places.  

This same plea applies to much less notable places characterized by a concentration of 

essential economic activities with exceedingly low patenting rates. The production of food and 

fiber in rural areas is the most obvious example. The World Bank’s report on Reshaping 

Economic Geography provides a convenient oversimplification that allocates the whole of the 

innovation economy, where invention is presumed to take place, to the largest cities:  

Research over the last generation indicates that different forms of human settlement facilitate 
agglomeration economies for different forms of production. A somewhat-oversimplified (but not altogether 
incorrect) generalization would be that market towns facilitate scale economies in marketing and 
distributing agricultural produce, medium-size cities provide localization economies for manufacturing 
industries, and the largest cities provide diverse facilities and foster innovation in business, government, 
and education services (2009, p. 128). 

A more nuanced view of the World Bank report would acknowledge that small parts of 

the innovation economy may locate in some rural areas. From this perspective, both maps above 

distort the true inventive capacity of places. 
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An Inductive Approach for Identifying the Inventive Class 
The essential problem is how one defines an exemplary population for evaluating the 

inventive productiveness of a region. In the absence of a single compelling alternative, total 

population has been uncritically accepted as the valid default measure.  Since indicators using 

population as the denominator comport with where conventional wisdom expects inventive 

productiveness to be highest there has been no reason to challenge its adequacy. However, the 

thought experiment above demonstrates why this is a weak construct for assessing inventive 

productiveness.  Since “it is not obvious what the appropriate set of occupations should be” 

(Carlino et al. p. 404) the absence of a perfect denominator has dispelled the need to look for a 

much better denominator.  Our goal is to begin this search for a better denominator that 

represents an inventive class that does not dilute the contribution of the part of the economy that 

plausibly contributes to patenting.iii   

We attempted to identify an inventive class using the inclusive 24 summary occupations 

in the U.S. Census Bureau’s American Community Survey. This attempt led to two findings: (1) 

the only occupations consistently associated with patenting are members of Richard Florida’s 

“creative class,” described as professions that generate “new ideas, technology, and/or creative 

content” (Florida 2002, p. 8); and (2) some summary creative class occupations never associated 

with patenting contain detailed occupations one would expect to be (e.g., Postsecondary 

Teachers in the Education and Library Occupations category, i.e., college professors).  

This led us to limit the candidates for our inventive class to employees of the detailed 109 

creative class occupations.iv At the root of our analysis is a simple linear regression of 2000-2005 

county-level patent totals (Patents) on the share of the county’s workforce in each occupation 

(OccS) and 2003 Rural-Urban Continuum (Beale) Code fixed effects (γ). To mitigate effects of 



10 
 

collinearity between occupation shares, we randomly select 20 occupation shares to include in 

each of 10,000 separate regressions (Equation 1). 

Equation 1 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛽0 + 𝛽1𝑂𝑂𝑂𝑂1 + ⋯+ 𝛽20𝑂𝑂𝑂𝑂20 + 𝛾 + 𝜀 

Following each regression, we update a collection of count variables which record 

instances of inclusion for each occupation share as well as whether each occupation share 

coefficient is positive and significant at the 10% level. These measures allow us to calculate the 

percentage of time a particular occupation share effect is positive and significant in the iterative 

regression analysis. To account for differences in composition of inventive class in metropolitan 

and non-metropolitan areas, we separately analyze metro and non-metro counties. 

Our inventive subset inclusion criteria are as follows. Occupations associated with 

coefficients that are positive and significant in at least 75% of their regressions in the metro or 

non-metro analysis are characterized as inventive. We additionally include occupations 

associated with positive and significant coefficients in at least 50% of their regressions in the 

metro and non-metro analysis in our inventive subset to capture inventive processes that appear 

to be widespread, if not clearly defined. Of the 109 creative class occupations included in the 

analysis, we identify 42 as “inventive” (Table 1). 

  



11 
 

Table 1. Inventive occupations 

Occupation Percent positive and significant1 
Metro. Non-metro. 

Marketing and sales managers 85.46 100.00 
Computer and information systems managers 73.36 94.24 
Industrial production managers 0.00 95.21 
Architectural and engineering managers 86.51 100.00 
Miscellaneous managers, including funeral service managers and 
postmasters and mail superintendents 13.05 94.45 

Accountants and auditors 81.82 100.00 
Computer and information research scientists 60.75 53.17 
Computer systems analysts 12.65 97.41 
Computer programmers 53.20 100.00 
Software developers, applications and systems software 100.00 100.00 
Web developers 80.83 37.09 
Computer support specialists 29.44 95.99 
Network and computer systems administrators 0.78 93.68 
Computer network architects 1.45 99.64 
Computer occupations, all other 0.00 96.08 
Actuaries 2.86 99.15 
Architects, except naval 82.96 100.00 
Aerospace engineers 80.32 0.00 
Biomedical engineers and agricultural engineers 9.90 100.00 
Chemical engineers 0.00 100.00 
Computer hardware engineers 100.00 37.24 
Electrical and electronics engineers 100.00 66.41 
Industrial engineers, including health and safety 41.58 100.00 
Materials engineers 59.15 100.00 
Mechanical engineers 23.76 100.00 
Miscellaneous engineers, including nuclear engineers 83.63 94.45 
Drafters 0.00 88.87 
Medical scientists and life scientists, all others 98.25 100.00 
Astronomers and physicists 0.10 82.40 
Chemists and materials scientists 45.46 100.00 
Physical scientists, all other 85.21 100.00 
Psychologists 57.42 99.19 
Lawyers 82.37 69.10 
Postsecondary teachers 1.09 92.90 
Designers 99.85 100.00 
Actors 99.80 0.00 
Producers and directors 88.37 0.00 
Public relations specialists 1.75 79.26 
Technical writers 76.75 67.55 
Television, video, and motion picture camera operators and editors 84.84 1.54 
Sales representatives, wholesale and manufacturing 4.16 100.00 
Note: 1 At 10% level  
Source: Census Bureau 

Occupations that fail to “make the cut” include construction managers, first-line 

supervisors of retail sales workers, and operations research analysts, which are all associated 

with consistently negative effects in metro areas. Many occupations not traditionally associated 
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with inventiveness are eliminated, including telemarketers, food service managers, and travel 

agents. A number of natural and social science occupations such as atmospheric and space 

scientists, agricultural and food scientists, and economists are excluded from the inventive 

subset. 

The group of inventive occupations includes some detailed manager occupations, 

computer science professionals, engineers, natural scientists, and designers. Also included are 

lawyers who may contribute to inventiveness of the county population indirectly by providing 

legal counsel. Psychologists are also consistently associated with patenting, but the reason for 

this is not immediately clear. As with Actors, and Producer and Directors, these occupations may 

be indicators of highly inventive environments even if they are not directly involved in the 

patenting process. Our inductive approach does not allow excluding occupations that lack a 

strong conceptual connection to inventing. 

Comparing Patenting Rates Denominated by Population and Inventive Class 
The topography of the geography of invention in the patents per capita map is retained in 

Figure 3 but with a higher base plateau throughout and numerous eruptions of predominantly 

rural commuting zones. The map directly challenges the characterization of rural inventing as 

idiosyncratic and muted. 
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Figure 3. Patents per inventive class member, 2000-2005, by commuting zone 

 

To examine the validity of the alternative measures of inventive activity more fully, we 

adopt the axiomatic approach to indicators made famous by Sen’s (1976) assessment of 

alternative poverty measures. Axiomatically, both patents per capita and patents per inventive 

class member will show an increase in patenting rate with a decline in the relevant denominator, 

ceteris paribus. In the case of patents per capita a decline in population tells us nothing about the 

change in the inventive productiveness of a region. In the patents per inventive class member 

case, however, a decline in a region’s inventive class, ceteris paribus, signifies an increase in its 
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inventive productiveness, as fewer potential inventors and their auxiliaries are producing the 

same number of patents.  

The complex process surrounding population growth ensures that the ceteris paribus 

condition will rarely hold. Table 2 provides the information needed to compare patenting rates, 

population growth and employment shares across global city commuting zones. From the 

axiomatic critique, we would expect the rankings of those global city commuting zones 

experiencing a relative population decline to fall in rank moving from the per capita measure to 

the alternative inventive class measure. In fact, the Philadelphia commuting zone is the only low 

growth global city commuting zone (population growth less than 10% from 1975 to 2000) 

demonstrating a fall in rank. Cleveland, the global city commuting zone that had the largest 

population decline, also demonstrates the largest increase in rank when shifting from the per 

capita measure to the inventive class measure. Other global cities more associated with the 

declining Rust Belt than with innovative capacity such as Detroit and Milwaukee also rise in 

rank using the alternative measure.



Table 2. Patenting statistics for commuting zones containing global cities 
Patents per capita 

rank 
Global city 

commuting zone Patents per capita 
Patents per 

inventive class 
member 

Patents per 
inventive class 
member rank 

Change 
in rank1 

Population growth, 
1975-2000 

Manufacturing 
employment 

share 

Tradable services 
employment 

share 

Inventive class 
employment share 

1 San Jose, CA 0.02165 0.19103 1 0 45.90% 0.228 0.280 0.230 
2 San Francisco, CA 0.00614 0.06523 2 0 38.44% 0.103 0.344 0.183 
3 Portland, OR 0.00538 0.06414 3 0 62.25% 0.164 0.285 0.151 
4 Minneapolis, MN 0.00523 0.05301 5 -1 40.58% 0.151 0.332 0.171 
5 Raleigh, NC 0.00518 0.04794 9 -4 83.77% 0.178 0.256 0.174 
6 Seattle, WA 0.00514 0.05188 6 0 65.93% 0.148 0.309 0.177 
7 San Diego, CA 0.00492 0.06345 4 3 74.86% 0.119 0.279 0.158 
8 Boston, MA 0.00467 0.05037 8 0 11.20% 0.127 0.323 0.177 
9 Denver, CO 0.00315 0.03204 16 -7 69.69% 0.090 0.361 0.169 

10 Detroit, MI 0.00312 0.05103 7 3 1.50% 0.198 0.280 0.147 
11 Dallas, TX 0.00309 0.03870 11 0 79.46% 0.134 0.342 0.142 
12 Philadelphia, PA 0.00246 0.03298 15 -3 3.09% 0.122 0.295 0.153 
13 Phoenix, AZ 0.00241 0.03356 13 0 142.65% 0.110 0.277 0.126 
14 Houston, TX 0.00233 0.03022 18 -4 81.15% 0.121 0.276 0.132 
15 Cincinnati, OH 0.00232 0.03415 12 3 17.49% 0.160 0.288 0.134 
16 Cleveland, OH 0.00232 0.03918 10 6 -3.02% 0.191 0.266 0.129 
17 Milwaukee, WI 0.00228 0.03310 14 3 8.64% 0.221 0.256 0.135 
18 Chicago, IL 0.00202 0.02837 19 -1 15.42% 0.156 0.321 0.143 
19 Los Angeles, CA 0.00201 0.03172 17 2 55.89% 0.161 0.300 0.130 
20 Atlanta, GA 0.00198 0.02155 21 -1 102.81% 0.087 0.381 0.157 
21 Washington, DC 0.00188 0.01435 28 -7 39.83% 0.032 0.373 0.216 
22 Baltimore, MD 0.00156 0.01841 23 -1 16.34% 0.092 0.276 0.161 
23 St. Louis, MO 0.00147 0.02171 20 3 8.66% 0.135 0.302 0.135 
24 Kansas City, MO 0.00147 0.01922 22 2 26.07% 0.107 0.357 0.138 
25 Columbus, OH 0.00130 0.01679 25 0 27.95% 0.134 0.291 0.141 
26 Miami, FL 0.00127 0.01795 24 2 140.73% 0.063 0.307 0.116 
27 Charlotte, NC 0.00098 0.01313 30 -3 58.68% 0.187 0.311 0.126 
28 Tampa, FL 0.00095 0.01586 26 2 68.60% 0.078 0.274 0.116 
29 Orlando, FL 0.00088 0.01579 27 2 63.80% 0.067 0.313 0.110 
30 New York, NY 0.00087 0.01378 29 1 6.86% 0.062 0.359 0.132 

Note: 1 Denotes difference between "Patents per capita rank" and "Patents per inventive class member rank" 
Source: Redacted to maintain anonymity; Census Bureau; Bureau of Labor Statistics Quarterly Census of Employment and Wages; and Special Tabulation of the 2007-2011 Pooled American Community Survey 
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The characteristics that these declining Rust Belt cities share is a historic dependence on 

manufacturing, which might help explain the relatively higher patenting productivity of their inventive 

class. Based on evidence from 2008, most patent applications still come from manufacturing (69.5% of 

all patent applications in 2008), with industries in chemicals (13%), and computer and electronic 

products (29.9%), accounting for the bulk of all patent applications (Shackelford, 2013). Patenting in 

tradable services (25.7%) is less prevalent but still an important component of patent production 

(Shackelford, 2013). At the other end of the scale, patenting is relatively rare in nontradable services and 

in resource extraction (4.7%; Shackelford, 2013). From this set of facts, we would reasonably expect 

employment shares in manufacturing and tradable services to be associated with higher patenting rates. 

Table 3 provides a set of regressions to test this conjecture for patenting rates denominated by 

population and by inventive class, respectively. 

Table 3. Regression of industry shares on alternative patenting rates 
Variable Coefficient Standard Error 

Patents per capita, 2000-2005    
Manufacturing employment share, 2000 0.0015 ** 0.0003 

Tradable services employment share, 2000 0.0084 ** 0.0006 
Natural resources employment share, 2000 -0.0034 ** 0.0006 

    
Patents per inventive class member, 2000-2005    

Manufacturing employment share, 2000 0.0335 ** 0.0045 
Tradable services employment share, 2000 0.0274 ** 0.0071 
Natural resources employment share, 2000 -0.0391 ** 0.0081 

Note: Significance levels: **1%, *5%; Nontradable services employment share is excluded. 
Source: Redacted to maintain anonymity and Census Bureau 

Qualitatively, both measures perform consistently with conjectures. The major difference 

between the two measures is the magnitude of the manufacturing share coefficient estimate relative to 

the tradable services coefficient estimate. The patents per capita measure gives much more weight to 

tradable services in explaining differences in patenting rates relative to manufacturing, and the 

differences in the coefficient estimates are statistically significant. In contrast, the coefficient estimates 

for tradable services and manufacturing employment shares in the patents per inventive class member 
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equation are not statistically different. It is reasonable to posit that patenting rates may be dependent 

either on economic dynamism or a history of manufacturing specialization.  

By relying on a per capita measure, patenting rates will be unable to isolate these independent 

contributions.  

Making sense of conventional patenting rates is a challenge, as it assumes that patents emerge 

from a region’s ‘black box’—in which input factors are transformed into output—where a region’s 

population defines the relevant measure of input. Because the process of invention is not well 

understood, the metaphor of the black box appears to be as good as any. Compare this with a process 

that is well understood, such as childbirth. The fertility of a region using the black box metaphor would 

simply be the number of live births in the region divided by its population. Fertility would decline with 

an improvement in life expectancy and would increase with a relative decline in the young or elderly 

populations. By defining regional fertility as a product of these rate and compositional factors, 

respectively, demographers and public health analysts have the ability to compare fertility across regions 

with different compositions and to analyze the fertility of a single region through time as its composition 

changes. 

The same tools of standardization and decomposition are available for the study of patenting 

activity, as measured by patents per capita, if an inventive class is defined. The composition investigated 

here was derived inductively based on occupations that have a strong statistical association with 

patenting. Patenting rates computed using the inventive class as the denominator provides our rate 

factor, whereas inventive class as a share of total population provides our compositional factor 

(Equation 2):  

Equation 2 

Patents per capita= Patents
Inventive class

∙ Inventive class
Total population
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Standardization tells us what observed patenting rates across populations would be if their rate 

(compositional) factors were identical, while decomposition answers how much of the difference in the 

observed patenting rates across populations can be attributed to differences in their rate (compositional) 

factors. Thus, by standardizing and decomposing patenting rates, we can determine how much of the 

difference in the population denominated patenting rate across populations is attributable to differences 

in patenting productivity of the inventive class and how much is attributable to differences in the 

proportion of the inventive class as a share of total population. 

Suppose we have two populations, i and j, and two factors, ∝ and β. Following Das Gupta 

(1993), let the observed patenting rate of population k be expressed as  

Rk = αkβk  

Then, for k ∈ {i, j}, the α-standardized rate for population k is 

βi+βj
2

αk 

while the β-standardized rate for population k is 

αi+αj
2

βk 

Factor effects for α and β are defined as the difference in β-standardized and α-standardized rates for 

populations i and j, respectively. 

We begin by comparing the global city commuting zones that maintain a relatively high share of 

manufacturing employment (i.e., share of total employment in manufacturing exceeds global city 

median) to those that do not. The first three rows of Table 4 show the standardization and decomposition 

analysis for these two populations. First, comparing patenting under the assumption that both 

populations had identical patenting productivity (first row of Table 4) indicates that global cities with 
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low manufacturing shares would have higher patenting due to their composition than was actually 

observed (the observed rate is listed in the third row) and also higher than high manufacturing share 

global cities. Comparing patenting under the assumption that both populations had identical 

compositions (second row of Table 4) indicates that inventive class productivity in global cities with low 

manufacturing shares would have lower patenting than was actually observed and still lower patenting 

than high manufacturing share global cities. This suggests global cities with low manufacturing shares 

had a compositional advantage that was more than offset by a patenting productivity disadvantage 

within the inventive class. 

Table 4. Standardization and decomposition of patenting rates comparing global city commuting 
zones based on manufacturing dependence 

Measures Standardization Decomposition 

High and low manufacturing 
share global city CZs High mfg share Low mfg share Difference 

(effects) 

Percent 
distribution of 

effects 
Rate factor-standardized 
patenting rate 0.00288 0.00313 -0.00025 

(CF-effect) -24.6136 

Compositional factor-
standardized patenting rate 0.00365 0.00237 0.00128 

(RF-effect) 124.6136  

Observed patenting rate 0.00349 0.00247   
Source: Redacted to maintain anonymity 

 

Next, we extend the standardization and decomposition analysis to a comparison of global city 

and predominately rural commuting zones. As seen in the last column of Table 5, when applied to the 

two populations defined by global city and predominantly rural commuting zone status, nearly 54% of 

the difference in population denominated patenting rates can be attributed to differences in the regional 

composition. Instead of global cities being roughly five times more productive (0.00297/0.00065) than 

predominantly rural areas in producing patents, we see that when we hold inventive class population 

share constant, global cities are only twice as productive (0.00214/0.00107). That the new approach does 

not change the qualitative verdict that global cities are more inventive than predominantly rural areas 

suggests that Figure 1 is not a good representation of the regional capacity for patentable innovation. 

However, the large difference between the compositional factor-standardized patenting rate and the 
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observed patenting rate suggests that Figure 2 may also mislead. Contrary to being a matter of type 

where large cities support invention and smaller places generally do not, geography of invention is 

seemingly a matter of degree.  

Table 5. Standardization and decomposition of patenting rates comparing global city and predominantly 
rural commuting zones 

Measures Standardization Decomposition 

Global city and 
predominantly rural CZs Global city Predominately 

rural 
Difference 
(effects) 

Percent 
distribution of 

effects 
Rate factor-standardized 
patenting rate 0.00223 0.00098 0.00125 

(CF-effect) 53.7865 

Compositional factor-
standardized patenting rate 0.00214 0.00107 0.00107 

(RF-effect) 46.2135 

Observed patenting rate 0.00297 0.00065   
Source: Redacted to maintain anonymity 

Discussion 

Despite their widespread use, patents per capita have not been sanctified as official statistics for 

regional invention by national statistical agencies. Substantial efforts at the international level to 

harmonize patent statistics for cross-national comparisons provide strong evidence of the importance 

attached to these innovation indicators (Galindo-Rueda 2013, OECD 2009). Yet, the most recent review 

of the value of patent statistics is agnostic (National Research Council 2014, p. 5-9): 

  
The panel makes no explicit recommendation here for NCSES [National Science Foundation’s National 
Center for Science and Engineering Statistics] to do more than continue to explore wider use of patent 
indicators and to engage in international cooperation on the development of indicators based on patent 
records to address user needs. There is no standard method for calculating indicators from patent data, and 
as noted earlier, analysis of these data without reservation can lead to incorrect inferences and misleading 
policy decisions….As NCSES continues to disseminate patent data as part of its STI indicators program, it 
would be valuable to users to have clear cautions regarding the use and misuse of these statistics for 
decision-making purposes. 

The central purpose of this paper is to demonstrate that meaningful comparison of cross-

sectional or longitudinal patent rates requires defining a subpopulation that plausibly contributes to 

patenting.  The inductive identification of an inventive population or inventive class allows computing 

patenting rates on an exemplary population, where patenting productivity is not confounded by 
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population irrelevant to the patenting process. Separating the simple population patenting rate into a 

compositional factor and a rate factor introduces the concepts of standardization and decomposition that 

have been essential for meaningful cross-sectional and longitudinal comparisons of demographic 

phenomena. The importance of this method to the innovation literature is best expressed in the title of 

the National Research Council report: Capturing Change in Science, Technology, and Innovation: 

Improving Indicators to Inform Policy.  

The main take away from this analysis regarding the geography of invention is that rural 

patenting rates denominated by the inventive class are half the patenting rates of global cities in the US, 

on average. At the individual commuting zone level, 8% of predominantly rural commuting zones have 

patenting rates higher than half of the global cities. The claim that patenting is overwhelmingly an urban 

phenomenon, based on evidence produced from conventional patenting rates, dichotomizes the 

innovation economy. That dichotomization is likely to contribute to suboptimal innovation policy, as it 

mischaracterizes the large potential contribution from rural inventing. 

Shifting from an “inventive places of type” to an “inventive places of degree” perspective may 

hold little sway for many innovation researchers who will still claim that most inventive activity occurs 

in global cities. We are not worried that studying patenting and innovation in global cities will be 

reduced by the confirmation that a substantial amount of invention takes place elsewhere. What is more 

troubling are the simple linear notions of the mindset that contends that capturing the bulk of a 

phenomenon is all that should matter or that promoting a phenomenon only where it is most prevalent is 

the most efficient strategy. This linear view is best challenged by the fact that some of the most reliable 

patent producers today are located in a place thought better suited to growing apricots 60 years ago.  
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. 
                                                           
i The only comment we were able to find questioning the validity of using population as a denominator addressed 
patenting rate indicators in developing countries: “The number of U.S. patents per capita is a common proxy used to 
measure the relative innovation efficiency of countries, but we believe that this computation underestimates the 
innovative capacity of developing countries, because it fails to detect the productivity of highly capable centers of 
excellence within countries with large populations” (Morel, at al. 2005, p. 401). 
ii Determining the criteria for the smallest commuting zone classification was straightforward: commuting zones that 
contain only nonmetropolitan counties or commuting zones that contain only nonmetropolitan and small ex-urban 
counties classified as part of a Metropolitan Statistical Area are labelled as “predominantly rural.” This classification 
corresponds to all commuting zones with populations of less than 250,000 in 2000. Commuting zones that contain 
cities included in the list of Global Cities constructed by Globalization and World Cities (GaWC) Research Network at 
Loughborough University are labelled as “commuting zones containing global city.” The criteria for global city status 
are determined by the availability of advanced producer services essential for the global coordination of activities by 
multinational corporations (Beaverstock, Taylor, and Smith 1999). The remaining commuting zones make up the 
“commuting zones urban not containing global city” category. 
iii  Alternative denominators for computing regional patenting rates have been largely limited to employees, and R&D 
expenditures or R&D employees.  Replacing population with a measure of employment corrects for the distortion 
introduced by variation in the size of the dependent population across regions or through time (Meliciani 2000; 
Porter 2011).  Using R&D expenditures and R&D employees attempts to more narrowly define patent productivity but 
runs into the problem that not all patents come from R&D labs contributing to the erroneous result that R&D is 
supposedly most productive where R&D labs are rare.  The closest previous research to the current effort is to use the 
size of the science and engineering workforce in the denominator (Motoyama and Konczal 2013).   
iv The occupations used address the construct validity issues in Florida’s original measure (McGranahan and Wojan 
2007). 
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