ISSUES ASSOCIATED WITH THE USE OF UNTREATED ROADSIDE SPRINGS AS A SOURCE OF DRINKING WATER

Jim Clark, Bryan Swistock, Susan Boser, Dane Rizzo, Diane Oleson, Amy Galford, Mark Madden, and Gary Micsky

Penn State Extension

Project funding:

- U.S. Geological Survey through the Pennsylvania Water Resources Research Center
- Penn State Extension

Regional Use of Home Springs for Drinking Water

PSU Water Testing Project (Eight North Central PA Counties)

Type of Water Supply

Roadside Spring Background

- Number and use of roadside springs is largely unknown
- Referrals from physicians and homeowners with gastrointestinal issues has increased
 - High % consume spring water
- Summer 1990
 - 13 of 23 roadside springs in northeast PA found to contain coliform bacteria
- Users of roadside springs are passionate!

Roadside Spring Users are Passionate!

Restoring a Frozen Spring

(which wasn't really a spring)

PA GENERAL ASSEMBLY

SPECIAL REPORT JOINT LEGISLATIVE AIR AND WATER POLLUTION CONTROL AND CONSERVATION COMMITTEE – OCTOBER 1990

THE USE AND REGULATION OF ROADSIDE SPRINGS IN PENNSYLVANIA

RECOMMENDATIONS FROM REPORT

- 1. Create an inventory of roadside springs
- 2. Periodic microbiological testing of some better known springs by PA DEP
- 3. Disinfection of high-use springs

4. Expanded public information by Penn State Extension, PA DEP, etc.

2013 Preliminary Roadside Spring Study

- April August 2013
- Samples collected from 35 roadside springs by 7 Extension Educators
- Most springs located in PennDOT or local road right-of-ways
- Samples analyzed by Penn State laboratory for 20 inorganic and microbiological parameters

Roadside Springs Locations

WHAT DO THEY LOOK LIKE?

Beautiful stonework

Liability Concerns

Liability Concerns – Disinfection

Penn State Extension Water Quality Parameters

Parameter	Units	Drinking Water Standard			
Health-Related Parameters					
Total coliform bacteria	Colonies per 100 mL	0			
<i>E. coli</i> bacteria	Colonies per 100 mL	0			
Arsenic	mg/L	< 0.010 mg/L			
Barium	mg/L	< 2.0 mg/L			
Copper	mg/L	< 1.0 mg/L, <1.3 mg/L			
Lead	mg/L	< 0.015 mg/L			
Nitrate-N	mg/L	< 10 mg/L			
Aesthetic Parameters					
рН	unit-less	6.5 to 8.5			
Total Dissolved Solids (TDS)	mg/L	< 500 mg/L			
Chloride	mg/L	< 250 mg/L			
Sulfate	mg/L	< 250 mg/L			
Iron	mg/L	< 0.30 mg/L			
Manganese	mg/L	< 0.05 mg/L			
Corrosivity Index (LSI)	unit-less	Non-corrosive			
Aluminum	mg/L	< 0.20 mg/L			
Other Parameters					
Alkalinity	mg/L	NA			
Total Suspended Solids	mg/L	NA			
Hardness	mg/L	NA			

Summary

- Most of the springs tested failed at least one drinking water standard
 - Bacterial contamination prevalent, aesthetic issue rare
 - Untreated roadside springs should generally not be recommended for drinking water sources

Remaining Questions

- How frequently are roadside springs used?
- How variable is the water quality seasonally?
- Given the prevalence of bacteria, are other pathogens (protozoans) also present in roadside springs

Giardiasis Illness Rates

PA County Health Profiles, 2013, PA Department of Health Annual Cases per 100,000

Follow-Up Study 2014-2015

Goal = better quantify and reduce the public health risk from the use of untreated roadside springs as a drinking water source.

Objectives

- 1. Obtain survey data about the use of roadside springs for drinking water in Pennsylvania.
- 2. Quantify seasonal variability in water quality among select roadside springs.
- 3. Determine the presence of *Giardia* and *Cryptosporidium* in select roadside springs prone to *E. coli* contamination.
- 4. Create several educational resources to increase awareness about the risks of drinking water from untreated roadside springs.

Additional Roadside Spring Results

- Questions about the use of roadside springs were added to presentations given by Water Resources Extension Educators at events throughout the state.
- 10 roadside springs which contained *E. coli* bacteria in 2013 were selected for seasonal water quality testing during 2014-15.
 - Samples delivered to Penn State Ag Analytical Lab within 24 hours for analysis of 20 inorganic/microbiological parameters.
- 8 springs tested for Giardia and Crypto in Fall 2014 and Spring 2015 by Analytical Services, Williston, VT
 - 10 Liter delivered within 24 hours
 - EPA Method 1623.1

SURVEY OF ROADSIDE SPRING USE

- 1,034 responses at 55 educational programs
- Most responses from TurningPoint response cards

Regional Responses

- Northcentral = 312
- Northeast = 173
- Northwest = 41
- Southcentral = 287
- Southeast = 156
- Southwest = 66
- 310 (30%) have consumed water from a roadside spring at least once
- 722 (69%) have never consumed roadside spring water
- 6 (1%) gave no response

FREQUENCY OF ROADSIDE SPRING USE

WHY ARE ROADSIDE SPRINGS USED?

Roadside Springs Locations

- = roadside springs sampled in 2013
- = roadside springs re-tested in 2014-15 for additional parameters

Roadside Springs Sampled in 2014-15

Spring name	Location	County	Min Flow (gpm)	Max Flow (gpm)
Lycoming	41.44149, -77.577726	Lycoming	0.41	1.69
Orviston	41.107285, -77.697819	Centre	1.54	27.5
Route 6	41.792680, -78.224632	McKean	0.15	5
Rippling Run	39.850927, -76.597183	York	2.3	10
Ridge Road	40.801122, -80.47606	Beaver	2.0	10
Chapman Dam Rd	41.771313, -79.136143	Warren	6.6	13.3
Heffley Spring	40.375233, -78.966547	Cambria	3.0	39.0
Laurel Forge	40.034661, -77.272190	Cumberland	1.5	14.8
Waterville	41.22679, -77.32473	Lycoming	2.97	5.26
West Middlesex	41.165823,-80.443087	Mercer	2.0	8.5

Overall Results

Parameter	Mean	Min	Max	% Springs Failing	% Samples Failing	
Health-Related Pollutants						
Coliform bacteria	192	3	2,420	100%	100%	
<i>E. coli</i> bacteria	11	0	165	80%	43%	
Barium	0.02	0.009	0.031	0%	0%	
Lead	0.001	<0.001	0.004	0%	0%	
Nitrate-N	0.89	<0.50	4.36	0%	0%	
Aesthetic Pollutants						
рН	7.02	5.84	8.03	30%	18%	
TDS	126	<20	842	10%	8%	
Chloride	11.3	<5	62.5	0%	0%	
Sulfate	41.9	<10	390	10%	8%	
Iron	0.09	<0.05	0.57	10%	10%	
Manganese	0.003	<0.005	0.01	0%	0%	
Corrosivity	-1.93	-4.72	1.19	80%	80%	
Aluminum	0.06	<0.005	0.398	20%	5%	
Alkalinity	47.7	3.1	253	N/A	N/A	
TSS	1.71	<1	8.0	N/A	N/A	
Hardness	89.1	5.9	654	N/A	N/A	

All results in mg/L except bacteria (colonies per 100 mL), pH and corrosivity. All results for arsenic and copper were below detection

Giardia and Cryptosporidium

(Oocysts per L)

	Septem	ber 2014	March 2015			
Spring	Giardia	Crypto	Giardia	Crypto	Coliform Bacteria	<i>E. coli</i> Bacteria
Lycoming	5.28	5.01	0.09	0	62	0
Orviston	0	0	0	0	59	5
McKean	0	0	6.49	2.23	>201	0
Rippling Run	5.7	6.36	0	0	>201	0
Ridge Road	0	0	6.29	4.26	>201	8
Warren	4.07	4.71	6.75	6.93	50	0
Heffley	6.32	6.05	0	0	32	2
Laurel Forge	0	0	6.82	5.57	>201	0

Seasonal Variability

Rows show mean and (% exceeding drinking water standard)

Parameter	Summer 2014	Fall 2014	Winter 2014	Spring 2015		
Flow	9.5	3.4	5.3	10.4		
	Не	alth-Related Pollut	ants			
Coliform bacteria	402 (100%)	169 (100%)	87 (100%)	110 (100%)		
<i>E. coli</i> bacteria	20 (50%)	19 (50%)	1 (30%)	5 (40%)		
Barium	0.018	0.018	0.016	0.017		
Lead	0.002	0.001	0.001	0.001		
Nitrate-N	0.91	0.77	0.93	0.95		
Aesthetic Pollutants						
рН	6.85 (20%)	7.12 (10%)	6.99 (30%)	7.14 (10%)		
TDS	117 (10%)	144 (10%)	125 (10%)	118 (10%)		
Chloride	11.4	12.2	10.8	10.8		
Sulfate	39.7 (10%)	48.1 (10%)	44.8 (10%)	35.3 (10%)		
Iron	0.10 (10%)	0.07 (10%)	0.08 (10%)	0.10 (10%)		
Manganese	0.003	0.003	0.003	0.003		
Corrosivity	-2.2 (80%)	-1.74 (80%)	-1.97 (80%)	-1.82 (80%)		
Aluminum	0.05	0.03	0.04	0.10 (20%)		
Alkalinity	43	54	50	44		
TSS	2	1	2.1	1.7		
Hardness	83	102	94	76		

Seasonal Variability of Coliform Bacteria

Seasonal Variability of E. coli bacteria

Getting the Word Out!

- Roadside spring education was a component in 56 different programs which were presented to 1,619 residents over the past year.
- Of these attendees 887 (55%) completed an onsite paper or TurningPoint evaluation.
 - 845 (95%) learned new information
 - 690 (78%) were planning on taking some action as a result of hearing the presentation.
- Education efforts will be ongoing
- We created a short publication summarizing results from this study and a video

Summary

- Roadside springs are used routinely by a significant population in PA
- Seasonal testing of roadside springs during 2014-15 has found that most water chemistry is stable but bacteria levels are always present and tend to be highest during spring and summer
- Nearly all of the springs tested positive for low levels of *Giardia* and/or *Cryptosporidium* oocysts.
- The consumption of untreated roadside spring water represents a significant public health risk warranting future education and outreach efforts.

Questions?

